Cohomology of Groups — Exercise Sheet 12

JUN.-PROF. DR. CAROLINE LASSUEUR Due date: Monday, 12th of July 2021, 18:00

Exercise 1

Let *G* be a finite group. If *A* is a $\mathbb{Z}G$ -module which is induced from the trivial subgroup, then $H^n(G, A) = 0$ for every $n \ge 1$. Deduce that $H^n(G, A) = 0$ for every $n \ge 1$ if *A* is a projective $\mathbb{Z}G$ -module.

Exercise 2

Prove that $H^n(G, \mathbb{Q}/\mathbb{Z}) \cong H^{n+1}(G, \mathbb{Z})$ for all $n \ge 1$. [Hint: use an argument similar to the one used in the proof of Lemma 34.4.]

EXERCISE 3 Prove that if *G* is a finite cyclic group, then $M(G) \cong 0$. [Note: there are several possible approaches using results seen in the lecture so far.]