Cohomology of Groups — Exercise Sheet 10

JUN.-PROF. DR. CAROLINE LASSUEUR Due date: Monday, 28th of June 2021, 18:00

Exercise 1

Let *A* be a $\mathbb{Z}G$ -module, written multiplicatively and let $f : G \times G \longrightarrow A$ be a normalised 2-cocycle. Let $E_f = A \times G$ with product

$$(a,g)(b,h) = (a^{g}bf(g,h),gh) \qquad \forall (a,g), (b,h) \in E_{f}.$$

Using the 2-cocycle identity, prove that E_f is a group and that the left and right inverses coincide, that is:

$$(g^{-1}a^{-1}f(g^{-1},g)^{-1},g^{-1}) = (g^{-1}a^{-1}g^{-1}f(g,g^{-1})^{-1},g^{-1}) \quad \forall (a,g) \in E_f.$$

Moreover, verify that there is an extension $1 \longrightarrow A \longrightarrow E_f \longrightarrow G \longrightarrow 1$ associated with the 2-cocycle *f* which induces the given *G*-action on *A*.

Exercise 2

(a) Let $A := C_4$ and $G := C_2$.

- Find all actions by group automorphisms of *G* on *A*.
- For each such action, compute $H^2(G, A)$.
- In each case, describe all extensions of *A* by *G* inducing the given action, up to equivalence.
- (b) Let $G := C_2 \times C_2$ and $A := C_2$ regarded as a trivial $\mathbb{Z}G$ -module. Assume known that $H^2(G, A) \cong (\mathbb{Z}/2)^3$.
 - Given 1 → A → E → G → 1 an arbitrary central extension of A by G, determine a presentation of the group E using a presentation of A and a presentation of G.
 - Find all central extensions of *A* by *G*, up to equivalence, using the previous point.
- (c) Classify groups of order 8 up to isomorphism.