
Chapter 2. Background Material: Module Theory

The aim of this chapter is to recall the basics of the theory of modules, which we will use throughout.
We review elementary constructions such as quotients, direct sum, direct products, exact sequences,
free/projective/injective modules and tensor products, where we emphasise the approach via universal
properties. Particularly important for the forthcoming homological algebra and cohomology of groups
are the notions of free and, more generally, of projective modules.

Throughout this chapter we let R and S denote rings, and unless otherwise specified, all rings are
assumed to be unital and associative.

Most results are stated without proof, as they have been studied in the B.Sc. lecture Commutative
Algebra. As further reference I recommend for example:

Reference:

[Rot10] J. J. R�����, Advanced modern algebra. 2nd ed., Providence, RI: American Mathematical
Society (AMS), 2010.

3 Modules, Submodules, Morphisms

Definition 3.1 (Left R-module, right R-module, pR � Sq-bimodule, homomorphism of modules)

(a) A left R-module is an abelian group pM� `q endowed with a scalar multiplication (or external

composition law) ¨ : R ˆ M ›Ñ M� p�� �q fiÑ � ¨ � such that the map

λ : R ›Ñ EndpMq

� fiÑ λp�q :“ λ� : M ›Ñ M� � fiÑ � ¨ � ,

is a ring homomorphism. By convention, when no confusion is to be made, we will simply
write "R-module" to mean "left R-module", and �� instead of � ¨ �.

(a’) A right R-module is defined analogously using a scalar multiplication ¨ : M ˆ R ›Ñ M�
p�� �q fiÑ � ¨ � on the right-hand side.

(a”) If S is a second ring, then an pR � Sq-bimodule is an abelian group pM� `q which is both a
left R-module and a right S-module, and which satisfies the axiom

� ¨ p� ¨ �q “ p� ¨ �q ¨ � @ � P R � @ � P S� @ � P M �

17
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(b) An R-submodule of an R-module M is a subgroup N § M such that � ¨ � P N for every � P R
and every � P N . (Similarly for right modules and bimodules.)

(c) A (homo)morphism of R-modules (or an R-linear map, or an R-homomorphism) is a map of
R-modules � : M ›Ñ N such that:

(i) � is a group homomorphism; and
(ii) �p� ¨ �q “ � ¨ �p�q @ � P R , @ � P M .

A bijective homomorphism of R-modules is called an isomorphism (or an R-isomorphism), and
we write M – N if there exists an R-isomorphism between M and N .
An injective (resp. surjective) homomorphism of R-modules is sometimes called a monomor-

phism (resp. epimorphism) and we sometimes denote it with a hook arrow "ãÑ" (resp. a
two-head arrow "⇣").
(Similarly for right modules and bimodules.)

Notation: We let RMod denote the category of left R-modules (with R-linear maps as morphisms), we
let ModR denote the category of right R-modules (with R-linear maps as morphisms), and we let RModS
denote the category of pR � Sq-bimodules (with pR � Sq-linear maps as morphisms). For the language of
category theory, see the Appendix.

Convention: From now on, unless otherwise stated, we will always work with left modules.

Example 5

(a) Vector spaces over a field K are K -modules, and conversely.

(b) Abelian groups are Z-modules, and conversely.

(c) If the ring R is commutative, then any right module can be made into a left module, and
conversely.

(d) If � : M ›Ñ N is a morphism of R-modules, then the kernel kerp�q of � is an R-submodule
of M and the image Imp�q :“ �pMq of � is an R-submodule of N .

Notation 3.2

Given R-modules M and N , we set HomR pM� Nq :“ t� : M ›Ñ N | � is an R-homomorphismu.
This is an abelian group for the pointwise addition of functions:

` : HomR pM� Nq ˆ HomR pM� Nq ›Ñ HomR pM� Nq

p�� ψq fiÑ � ` ψ : M ›Ñ N� � fiÑ �p�q ` ψp�q .

In case N “ M , we write EndR pMq :“ HomR pM� Mq for the set of endomorphisms of M and
AutR pMq for the set of automorphisms of M , i.e. the set of invertible endomorphisms of M .
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Exercise [Exercise 1, Exercise Sheet 3]
Let M� N be R-modules. Prove that:

(a) EndR pMq, endowed with the usual composition and sum of functions, is a ring.

(b) If R is commutative then the abelian group HomR pM� Nq is a left R-module.

Lemma-Definition 3.3 (Quotients of modules)

Let U be an R-submodule of an R-module M . The quotient group M{U can be endowed with the
structure of an R-module in a natural way:

R ˆ M{U ›Ñ M{U`
�� � ` U

˘
fi›Ñ � ¨ � ` U

The canonical map π : M ›Ñ M{U� � fiÑ � ` U is R-linear.

Proof : Direct calculation.

Theorem 3.4

(a) Universal property of the quotient: Let � : M ›Ñ N be a homomorphism of R-modules.
If U is an R-submodule of M such that U Ñ kerp�q, then there exists a unique R-module
homomorphism � : M{U ›Ñ N such that � ˝ π “ �, or in other words such that the following
diagram commutes:

M N

M{U

π

�

ö
D! �

Concretely, �p� ` Uq “ �p�q @ � ` U P M{U .

(b) 1st isomorphism theorem: With the notation of (a), if U “ kerp�q, then

� : M{kerp�q ›Ñ Imp�q

is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If U1� U2 are R-submodules of M , then so are U1XU2 and U1`U2,
and there is an an isomorphism of R-modules

pU1 ` U2q{U2 – U1{U1 X U2 �

(d) 3rd isomorphism theorem: If U1 Ñ U2 are R-submodules of M , then there is an an isomor-
phism of R-modules ´

M{U1

¯
{
´

U2{U1

¯
– M{U2 �

(e) Correspondence theorem: If U is an R-submodule of M , then there is a bijection
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tX R-submodule of M | U Ñ Xu –Ñ tR-submodules of M{Uu

X fiÑ X{U
π´1

pZ q –[ Z .

Proof : We assume it is known from the "Einführung in die Algebra" that these results hold for abelian groups
and morphisms of abelian groups. Exercise: check that they carry over to the R-module structure.

Definition 3.5 (Cokernel, coimage)

Let � P HomR pM� Nq. Then, the cokernel of � is the quotient R-module N{Im � , and the coimage

of � is the quotient R-module M{ker � .

4 Direct products and direct sums

Let tM�u�PI be a family of R-modules. Then the abelian group
±

�PI M�, that is the product of tM�u�PI
seen as a family of abelian groups, becomes an R-module via the following external composition law:

R ˆ

π

�PI
M� ›Ñ

π

�PI
M�

`
�� p��q�PI

˘
fi›Ñ

`
� ¨ ��

˘
�PI �

Furthermore, for each � P I , we let π� :
±

�PI M� ›Ñ M� denotes the �-th projection from the product to
the module M� .

Proposition 4.1 (Universal property of the direct product)

If
 
�� : L ›Ñ M�u�PI is a collection of R-linear maps, then there exists a unique morphism of

R-modules � : L ›Ñ
±

�PI M� such that π� ˝ � “ �� for every � P I .

L

��

��

��

⌘⌘

�

✏✏±
�PI M�

π�
{{

π�
##

M� M�

In other words

HomR
´

L�
π

�PI
M�

¯
›Ñ

π

�PI
HomR pL� M�q

� fi›Ñ
`
π� ˝ �

˘
�

is an isomorphism of abelian groups.
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Proof : Exercise 2, Exercise Sheet 3.

Now let
À

�PI M� be the subgroup of
±

�PI M� consisting of the elements p��q�PI such that �� “ 0 al-
most everywhere (i.e. �� “ 0 exept for a finite subset of indices � P I). This subgroup is called the
direct sum of the family tM�u�PI and is in fact an R-submodule of the product. For each � P I , we let
η� : M� ›Ñ

À
�PI M� denote the canonical injection of M� in the direct sum.

Proposition 4.2 (Universal property of the direct sum)

If
 
�� : M� ›Ñ Lu�PI is a collection of R-linear maps, then there exists a unique morphism of

R-modules � :
À

�PI M� ›Ñ L such that � ˝ η� “ �� for every � P I .

L

À
�PI M�

�

OO

M�

η�

;;

��

CC

M�

η�

cc

��

[[

In other words

HomR
´ à

�PI
M�� L

¯
›Ñ

π

�PI
HomR pM�� Lq

� fi›Ñ
`
� ˝ η�

˘
�

is an isomorphism of abelian groups.

Proof : Exercise 2, Exercise Sheet 3.

Remark 4.3

It is clear that if |I| † 8, then
À

�PI M� “
±

�PI M�.

The direct sum as defined above is often called an external direct sum. This relates as follows with the
usual notion of internal direct sum:

Definition 4.4 (“Internal” direct sums)

Let M be an R-module and N1� N2 be two R-submodules of M . We write M “ N1 ‘ N2 if every
� P M can be written in a unique way as � “ �1 ` �2, where �1 P N1 and �2 P N2.

In fact M “ N1 ‘ N2 (internal direct sum) if and only if M “ N1 ` N2 and N1 X N2 “ t0u.

Proposition 4.5

If N1� N2 and M are as above and M “ N1 ‘ N2 then the homomorphism of R-modules
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� : M ›Ñ N1 ˆ N2 “ N1 ‘ N2 (external direct sum)
� “ �1 ` �2 fiÑ p�1� �2q ,

is an isomorphism of R-modules.

The above generalises to arbitrary internal direct sums M “
À

�PI N�.

5 Exact Sequences

Definition 5.1 (Exact sequence)

A sequence L �
›Ñ M ψ

›Ñ N of R-modules and R-linear maps is called exact (at M) if Im � “ ker ψ.

Remark 5.2 (Injectivity/surjectivity/short exact sequences)

(a) L �
›Ñ M is injective ñ 0 ›Ñ L �

›Ñ M is exact at L.

(b) M ψ
›Ñ N is surjective ñ M ψ

›Ñ N ›Ñ 0 is exact at N .

(c) 0 ›Ñ L �
›Ñ M ψ

›Ñ N ›Ñ 0 is exact (i.e. at L, M and N) if and only if � is injective, ψ is
surjective and ψ induces an isomorphism ψ : M{Im � ›Ñ N .
Such a sequence is called a short exact sequence (s.e.s. in short).

(d) If � P HomR pL� Mq is an injective morphism, then there is a s.e.s.

0 ›Ñ L �
›Ñ M π

›Ñ cokerp�q ›Ñ 0

where π is the canonical projection.

(d) If ψ P HomR pM� Nq is a surjective morphism, then there is a s.e.s.

0 ›Ñ kerp�q
�

›Ñ M ψ
›Ñ N ›Ñ 0 �

where � is the canonical injection.

Proposition 5.3

Let Q be an R-module. Then the following holds:

(a) HomR pQ� ´q : RMod ›Ñ Ab is a left exact covariant functor. In other words, if
0 ›Ñ L �

›Ñ M ψ
›Ñ N ›Ñ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomR pQ� Lq
�˚
// HomR pQ� Mq

ψ˚
// HomR pQ� Nq

is an exact sequence of abelian groups. (Here �˚ :“ HomR pQ� �q, that is �˚pαq “ � ˝ α and
similarly for ψ˚.)

(b) HomR p´� Qq : RMod ›Ñ Ab is a left exact contravariant functor. In other words, if
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0 ›Ñ L �
›Ñ M ψ

›Ñ N ›Ñ 0 is a s.e.s of R-modules, then the induced sequence

0 // HomR pN� Qq
ψ˚
// HomR pM� Qq

�˚
// HomR pL� Qq

is an exact sequence of abelian groups. (Here �˚ :“ HomR p�� Qq, that is �˚
pαq “ α ˝ � and

similarly for ψ˚.)

Proof : One easily checks that HomR pQ� ´q and HomR p´� Qq are functors.

(a) ¨ Exactness at HomR pQ� Lq: Clear.
¨ Exactness at HomR pQ� Mq: We have

β P ker ψ˚ ñ ψ ˝ β “ 0
ñ Im β Ä ker ψ
ñ Im β Ä Im �
ñ @� P Q� D! �� P L such that βp�q “ �p��q

ñ D a map λ : Q ›Ñ L which sends � to �� and such that � ˝ λ “ β
� inj
ñ D λ P HomR pQ� Lq which send � to �� and such that � ˝ λ “ β
ñ β P Im �˚�

(b) Exercise 5, Exercise Sheet 3.

Remark 5.4

Notice that HomR pQ� ´q and HomR p´� Qq are not right exact in general. See Exercise 5, Exercise
Sheet 3.

Lemma 5.5 (The snake lemma)

Suppose we are given the following commutative diagram of R-modules and R-module homomor-
phisms with exact rows:

L �
//

�
✏✏

M ψ
//

�
✏✏

N //

�
✏✏

0

0 // L1 �1
// M 1 ψ1

// N 1

Then the following hold:

(a) There exists an exact sequence

ker � �
// ker � ψ

// ker � δ
// coker � �1

// coker � ψ1
// coker ��

where �1, ψ1 are the morphisms induced by the universal property of the quotient, and δp�q “

πL ˝ �1´1
˝ � ˝ ψ´1

p�q for every � P kerp�q (here πL : L ›Ñ cokerp�q is the canonical
homomorphism). The map δ is called the connecting homomomorphism.

(b) If � : L ›Ñ M is injective, then �|ker � : ker � ›Ñ ker � is injective.

(c) If ψ1 : M 1
›Ñ N 1 is surjective, then ψ1 : coker � ›Ñ coker � is surjective.

Proof : (a) First, we check that δ is well-defined. Let � P ker � and choose two preimages �1� �2 P M of
� under ψ. Hence �1 ´ �2 P ker ψ “ Im �. Thus, there exists � P L such that �1 “ �p�q ` �2.



Skript zur Vorlesung: Cohomology of Groups SS 2018 24

Then, we have
�p�1q “ � ˝ �p�q ` �p�2q “ �1

˝ �p�q ` �p�2q�

Since � P ker �, for � P t1� 2u we have

ψ1
˝ �p��q “ � ˝ ψp��q “ �p�q “ 0�

so that �p��q P ker ψ1
“ Im �1. Therefore, there exists �1

� P L1 such that �1
p�1

�q “ �p��q. It follows
that

�p�2q “ �1
p�1

2q “ �1
˝ �p�q ` �1

p�1
1q�

Since �1 is injective, we obtain �1
2 “ �p�q ` �1

1. Hence, �1
1 and �1

2 have the same image in coker � .
Therefore, δ is well-defined.
We now want to check the exactness at ker �. Let � P ker �. Then �p�q “ 0, so that δψp�q “ 0
and thus Im ψ

ˇ̌
ker � Ä ker δ . Conversely, let � P ker δ . With the previous notation, this means that

�1
1 “ 0, and thus �1

1 “ � p̃�q for some �̃ P L. We have

� ˝ �p̃�q “ �1
˝ � p̃�q “ �1

p�1
1q “ �p�1q�

Hence, �1 ´ �p̃�q P ker �. It remains to check that this element is sent to � by ψ. We get

ψ
`
�1 ´ �p̃�q

˘
“ ψp�1q ´ ψ ˝ �p̃�q “ ψp�1q “ ��

Hence Im ψ
ˇ̌
ker � “ ker δ .

The fact that δ is an R-homomorphism, and the exactness at the other points are checked in a
similar fashion.

(b) Is obvious.
(c) Is a a direct consequence of the universal property of the quotient.

Remark 5.6

The name of the lemma comes from the following diagram

0

✏✏

0

✏✏

0

✏✏

ker �

✏✏

�
// ker �

✏✏

ψ
// ker �

✏✏

//

L
δ�

✏✏

�
// M

�
✏✏

ψ
// N

�
✏✏

// 0

0 // L1

✏✏

�1
// M 1

✏✏

ψ1
// N 1

✏✏

coker �

✏✏

�1
// coker �

✏✏

ψ1
// coker �

✏✏✏✏

0 0 0

If fact the snake lemma holds in any abelian category. In particular, it holds for the categories of
chain and cochain complexes, which we will study in Chapter 3.
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Lemma-Definition 5.7

A s.e.s. 0 ›Ñ L �
›Ñ M ψ

›Ñ N ›Ñ 0 of R-modules is called split iff it satisfies the following
equivalent conditions:

(a) There exists an R-linear map σ : N ›Ñ M such that ψ ˝σ “ idN (σ is called a section for ψ).

(b) There exists an R-linear map ρ : M ›Ñ L such that ρ ˝ � “ idL (ρ is called a retraction

for �).

(c) The submodule Im � “ ker ψ is a direct summand of M , that is there exists a submodule M 1

of M such that M “ Im � ‘ M 1.

Proof : Exercise.

Example 6

The sequence
0 // Z{2Z

�
// Z{2Z ‘ Z{2Z

π
// Z{2Z // 0

defined by �pr1sq “ pr1s� r0sq and π is the canonical projection into the cokernel of � is split but
the squence

0 // Z{2Z
�
// Z{4Z

π
// Z{2Z // 0

defined by �pr1sq “ pr2sq and π is the canonical projection onto the cokernel of � is not split.

6 Free, Injective and Projective Modules

Free modules

Definition 6.1 (Generating set / R-basis / free R-module)

Let M be an R-module and X Ñ M be a subset.

(a) M is said to be generated by X if every element of M can be written as an R-linear combi-
nation

∞
�PX λ�� , that is with λ� P R almost everywhere 0.

(b) X is an R-basis (or a basis) if X generates M and if every element of M can be written in a
unique way as an R-linear combination

∞
�PX λ�X (i.e. with λ� P R almost everywhere 0).

(c) M is called free if it admits an R-basis.
Notation: In this case we write M “

À
�PX R� –

À
�PX R “: R pXq.

Remark 6.2

(a) When we write the sum
∞

�PX λ�X , we always assume that the λ� are 0 almost everywhere.

(b) Let X be a generating set for M . Then, X is a basis of M if and only if S is R-linearly
independent.
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(c) If R is a field, then every R-module is free. (R-vector spaces.)

Proposition 6.3 (Universal property of free modules)

Let P be a free R-module with basis X and let � : X �
�

//P be the inclusion map. For every R-
module M and for every map (of sets) � : X ›Ñ M , there exists a unique morphism of R-modules
�̃ : P ›Ñ M such that the following diagram commutes

X �
//

�
✏✏

M

P
�̃

>>

Proof : If P Q � “
∞

�PX λ�� (unique expression), then we set �̃p�q “
∞

�PX λ��p�q. It is then easy to check
�̃ has the required properties.

Proposition 6.4 (Properties of free modules)

(a) Every R-module M is isomorphic to a quotient of a free R-module.

(b) If P is a free R-module, then HomR pP� ´q is an exact functor.

Proof : (a) Choose a set t��u�PI of generators of M (take all elements of M if necessary). Then define

� :
à

�PI
R ›Ñ M

p��q�PI fi›Ñ

ÿ

�PI
�����

It follows that M – p
À

�PI Rq {ker � .

(b) We know that HompP� ´q is left exact for any R-module P . It remains to prove that if ψ : M ›Ñ N
is a surjective R-linear maps, then ψ˚ : HomR pP� Mq ›Ñ HomR pP� Nq : β ›Ñ ψ˚pβq “ ψ ˝ β is
also surjective. So let α P HomR pP� Nq. We have the following situation:

P
α
✏✏

D?

~~

M
ψ
// N // 0

Let t��u�PI be an R-basis of P . Each αp��q P N is in the image of ψ, so that for each � P I there
exists �� P M such that ψp��q “ αp��q. Hence, there is a map β : t��u�PI ›Ñ M� �� fiÑ ��. By the
universal property of free modules this induces an R-linear map β̃ : P ›Ñ M such that β̃p��q “ ��
@ � P I . Thus

ψ ˝ β̃p��q “ ψp��q “ αp��q �

so that ψ ˝ β̃ and α coincide on the basis t��u�PI . By the uniqueness of β̃, we must have α “

ψ ˝ β̃ “ ψ˚
`
β̃

˘
.
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Injective modules

Proposition-Definition 6.5 (Injective module)

Let I be an R-module. Then the following are equivalent:

(a) The functor HomR p´� Iq is exact.

(b) If � P HomR pL� Mq is a injective morphism, then �˚ : HomR pM� Iq ›Ñ HomR pL� Iq is surjective
(hence, any R-linear map α : L ›Ñ I can be lifted to an R-linear map β : M ›Ñ I , i.e.,
β ˝ � “ α).

(c) If η : I ›Ñ M is an injective R-linear map, then η splits, i.e., there exists ρ : M ›Ñ I such
that ρ ˝ η “ IdI .

If I satisfies these equivalent conditions, then I is called injective.

Proof : Exercise.

Remark 6.6

Note that Condition pbq is particularly interesting when L § M and � is the inclusion.

Projective modules

Proposition-Definition 6.7 (Projective module)

Let P be an R-module. Then the following are equivalent:

(a) The functor HomR pP� ´q is exact.

(b) If ψ P HomR pM� Nq is a surjective morphism of R-modules, then the morphism of abelian
groups ψ˚ : HomR pP� Mq ›Ñ HomR pP� Nq is surjective.

(c) If π : M ›Ñ P is a surjective R-linear map, then π splits, i.e., there exists σ : P ›Ñ M such
that π ˝ σ “ IdP .

(d) P is isomorphic to a direct summand of a free R-module.

If P satisfies these equivalent conditions, then P is called projective.

Example 7

(a) If R “ Z, then every submodule of a free Z-module is again free (main theorem on Z-modules).

(b) Let � be an idempotent in R , that is �2
“ �. Then, R – R� ‘ Rp1 ´ �q and R� is projective

but not free if � ‰ 0� 1.

(c) A product of modules tI�u�PJ is injective if and only if each I� is injective.

(d) A direct sum of modules tP�u�PI is projective if and only if each P� is projective.
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7 Tensor Products

Definition 7.1 (Tensor product of R-modules)

Let M be a right R-module and let N be a left R-module. Let F be the free abelian group (= free
Z-module) with basis M ˆ N . Let G be the subgroup of F generated by all the elements

p�1 ` �2� �q ´ p�1� �q ´ p�2� �q� @�1� �2 P M� @� P N�
p�� �1 ` �2q ´ p�� �1q ´ p�� �2q� @� P M� @�1� �2 P N� and
p��� �q ´ p�� ��q� @� P M� @� P N� @� P R �

The tensor product of M and N (balanced over R ), is the abelian group M bR N :“ F{G . The
class of p�� �q P F in M bR N is denoted by � b �.

Remark 7.2

(a) M bR N “ x� b � | � P M� � P NyZ.

(b) In M bR N , we have the relations

p�1 ` �2q b � “ �1 b � ` �2 b �� @�1� �2 P M� @� P N�
� b p�1 ` �2q “ � b �1 ` � b �2� @� P M� @�1� �2 P N� and
�� b � “ � b ��� @� P M� @� P N� @� P R �

In particular, � b 0 “ 0 “ 0 b � @ � P M , @ � P N and p´�q b � “ ´p� b �q “ � b p´�q

@ � P M , @ � P N .

Definition 7.3 (R-balanced map)

Let M and N be as above and let A be an abelian group. A map � : M ˆ N ›Ñ A is called
R-balanced if

�p�1 ` �2� �q “ �p�1� �q ` �p�2� �q� @�1� �2 P M� @� P N�
�p�� �1 ` �2q “ �p�� �1q ` �p�� �2q� @� P M� @�1� �2 P N�
�p��� �q “ �p�� ��q� @� P M� @� P N� @� P R �

Remark 7.4

The canonical map � : M ˆ N ›Ñ M bR N� p�� �q fiÑ � b � is R-balanced.

Proposition 7.5 (Universal property of the tensor product)
Let M be a right R-module and let N be a left R-module. For every abelian group A and every
R-balanced map � : M ˆ N ›Ñ A there exists a unique Z-linear map � : M bR N ›Ñ A such that
the following diagram commutes: M ˆ N �

//

�
✏✏

A

M bR N
�

ö
;;
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Proof : Let � : M ˆ N ›Ñ F denote the canonical inclusion, and let π : F ›Ñ F{G denote the canonical
projection. By the universal property of the free Z-module, there exists a unique Z-linear map �̃ : F ›Ñ A
such that �̃ ˝ � “ � . Since � is R-balanced, we have that G Ñ kerp�̃q. Therefore, the universal property of
the quotient yields the existence of a unique homomorphism of abelian groups � : F{G ›Ñ A such that
� ˝ π “ �̃ :

M ˆ N �
//

�

✏✏

�

��

A

F

�̃

==

π

✏✏

M bR N – F{G

�

KK

Clearly � “ π ˝ �, and hence � ˝ � “ � ˝ π ˝ � “ �̃ ˝ � “ � .

Remark 7.6

(a) Let tM�u�PI be a collection of right R-modules, M be a right R-module, N be a left R-module
and tN�u�PJ be a collection of left R-modules. Then, we have

à

�PI
M� bR N –

à

�PI
pM� bR Nq

M bR
à

�PJ
N� –

à

�PJ
pM bR N�q�

(b) For every R-module M , we have R bR M – M via � b � fiÑ ��.

(c) If P be a free left R-module with basis X , then M bR P –
À

�PX M .

(d) Let Q be a ring. Let M be a pQ� Rq-bimodule and let N be an pR � Sq-module. Then M bR N
can be endowed with the structure of a pQ� Sq-bimodule via

�p� b �q� “ �� b ��� @� P Q� @� P S� @� P M� @� P N�

(e) If R is commutative, then any R-module can be viewed as an pR � Rq-bimodule. Then, in
particular, M bR N becomes an R-module.

(f ) Tensor product of morphisms: Let � : M ›Ñ M 1 be a morphism of right R-modules and
� : N ›Ñ N 1 be a morphism of left R-modules. Then, by the universal property of the
tensor product, there exists a unique Z-linear map � b � : M bR N ›Ñ M 1

bR N 1 such that
p� b �qp� b �q “ �p�q b �p�q.

Proposition 7.7 (Right exactness of the tensor product)

(a) Let N be a left R-module. Then ´ bR N : ModR ›Ñ Ab is a right exact covariant functor.

(b) Let M be a right R-module. Then M bR ´ :R Mod ›Ñ Ab is a right exact covariant functor.
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Remark 7.8

The functors ´ bR N and M bR ´ are not left exact in general.

Definition 7.9 (Flat module)

A left R-module N is called flat if the functor ´ bR N : ModR ›Ñ Ab is a left exact functor.

Proposition 7.10

Any projective R-module is flat.

Proof : To begin with, we note that a direct sum of modules is flat if and only if each module in the sum is
flat. Next, consider the free R-module P “

À
�PX R� . If

0 // M1
�
// M2

ψ
// M3 // 0

is a short exact sequence of right R-modules, then we obtain

0 // M1 bR
` À

�PX R
˘ �bIdP

//

–
✏✏

M2 bR
` À

�PX R
˘ ψbIdP

//

–
✏✏

M3 bR
` À

�PX R
˘

//

–
✏✏

0

0 //

À
�PX M1

p�q�PX
//

À
�PX M2

pψq�PX
//

À
�PX M3 // 0�

Since the original sequence is exact, so is the bottom sequence, and therefore so is the top sequence.
Hence, ´ bR P is exact when P is free.
Now, if N is a projective R-module, then N ‘ N 1

“ P 1 for some free R-module P 1 and for some R-
module N 1. It follows that N is flat, by the initial remark.


