The group G is isomorphic to the group labelled by [3, 1] in the Small Groups library. Ordinary character table of $G \cong \mathrm{C} 3$:

	$1 a$	$3 a$	$3 b$
χ_{1}	1	1	1
χ_{2}	1	$E(3)$	$E(3)^{2}$
χ_{3}	1	$E(3)^{2}$	$E(3)$

Trivial source character table of $G \cong \mathrm{C} 3$ at $p=3$:

Normalisers N_{i}	N_{1}	N_{2}
p-subgroups of G up to conjugacy in G	P_{1}	P_{2}
Representatives $n_{j} \in N_{i}$	$1 a$	$1 a$
$1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}$	3	0
$1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}$	1	1

$$
\begin{aligned}
& P_{1}=\operatorname{Group}([()]) \cong 1 \\
& P_{2}=\operatorname{Group}([(1,2,3)]) \cong \mathrm{C} 3 \\
& \\
& N_{1}=\text { AlternatingGroup }([1 . .3]) \cong \mathrm{C} 3 \\
& N_{2}=\text { AlternatingGroup }([1 . .3]) \cong \mathrm{C} 3
\end{aligned}
$$

