The group G is isomorphic to the group labelled by [ 27, 4 ] in the Small Groups library. Ordinary character table of  $G \cong \mathbb{C}9$ :  $\mathbb{C}3$ :

|             | 1a | 9a         | 3a         | 3b         | 9b         | 9c         | 3c         | 3d         | 9d         | 9e         | 9f         |
|-------------|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\chi_1$    | 1  | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          |
| $\chi_2$    | 1  | 1          | $E(3)^{2}$ | 1          | 1          | $E(3)^{2}$ | E(3)       | 1          | $E(3)^{2}$ | E(3)       | E(3)       |
| $\chi_3$    | 1  | 1          | E(3)       | 1          | 1          | E(3)       | $E(3)^{2}$ | 1          | E(3)       | $E(3)^{2}$ | $E(3)^{2}$ |
| $\chi_4$    | 1  | $E(3)^{2}$ | 1          | 1          | E(3)       | $E(3)^{2}$ | 1          | 1          | E(3)       | $E(3)^{2}$ | E(3)       |
| $\chi_5$    | 1  | E(3)       | 1          | 1          | $E(3)^{2}$ | E(3)       | 1          | 1          | $E(3)^{2}$ | E(3)       | $E(3)^{2}$ |
| $\chi_6$    | 1  | $E(3)^{2}$ | $E(3)^{2}$ | 1          | E(3)       | E(3)       | E(3)       | 1          | 1          | 1          | $E(3)^{2}$ |
| $\chi_7$    | 1  | E(3)       | E(3)       | 1          | $E(3)^{2}$ | $E(3)^{2}$ | $E(3)^{2}$ | 1          | 1          | 1          | E(3)       |
| $\chi_8$    | 1  | $E(3)^{2}$ | E(3)       | 1          | E(3)       | 1          | $E(3)^{2}$ | 1          | $E(3)^{2}$ | E(3)       | 1          |
| $\chi_9$    | 1  | E(3)       | $E(3)^{2}$ | 1          | $E(3)^{2}$ | 1          | E(3)       | 1          | E(3)       | $E(3)^{2}$ | 1          |
| $\chi_{10}$ | 3  | 0          | 0          | $3*E(3)^2$ | 0          | 0          | 0          | 3 * E(3)   | 0          | 0          | 0          |
| $\chi_{11}$ | 3  | 0          | 0          | 3 * E(3)   | 0          | 0          | 0          | $3*E(3)^2$ | 0          | 0          | 0          |

Trivial source character table of  $G \cong C9 : C3$  at p = 3:

 $P_1 = Group([()]) \cong 1$ 

| Normalisers $N_i$                                                                                                                                                                                | $N_1$ | $N_2$ | $N_3$ | $N_4$ | $N_5$ | $N_6$ | $N_7$ | $N_8$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| p-subgroups of $G$ up to conjugacy in $G$                                                                                                                                                        |       |       |       | $P_4$ | $P_5$ | $P_6$ | $P_7$ | $P_8$ |
| Representatives $n_j \in N_i$                                                                                                                                                                    |       |       |       | 1a    | 1a    | 1a    | 1a    | 1a    |
| $1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 3 \cdot \chi_{10} + 3 \cdot \chi_{11}$ | 27    | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| $1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$ | 9     | 9     | 0     | 0     | 0     | 0     | 0     | 0     |
| $1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$ | 9     | 0     | 3     | 0     | 0     | 0     | 0     | 0     |
| $1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$ | 3     | 3     | 3     | 3     | 0     | 0     | 0     | 0     |
| $1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$ | 3     | 3     | 0     | 0     | 3     | 0     | 0     | 0     |
| $1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$ | 3     | 3     | 0     | 0     | 0     | 3     | 0     | 0     |
| $1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$ | 3     | 3     | 0     | 0     | 0     | 0     | 3     | 0     |
| $1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$ | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

 $P_2 = Group([(1, 4, 10)(2, 7, 15)(3, 9, 17)(5, 12, 20)(6, 14, 22)(8, 16, 23)(11, 19, 25)(13, 21, 26)(18, 24, 27)]) \cong C3$ 

```
P_3 = Group([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27)]) \cong C3
P_4 = Group([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27), (1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27)]) \cong C3 \times C3
P_5 = Group([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27), (1,14,18,4,22,24,10,6,27)(2,19,16,7,25,23,15,11,8)(3,26,29,9,13,5,17,21,12)]) \cong C9
P_6 = Group([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27), (1,25,21,10,19,13,4,11,26)(2,3,24,15,17,18,7,9,27)(5,6,23,20,22,16,12,14,8)]) \cong C9
P_7 = Group([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27), (1,25,21,10,19,13,4,11,26)(2,3,24,15,17,18,7,9,27)(5,6,23,20,22,16,12,14,8)]) \cong C9
P_8 = Group([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27), (1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27), (1,2,5,4,7,12,10,15,20)(3,14,25,9,22,11,17,6,19)(8,26,24,16,13,27,23,21,18)]) \cong C9 : C3
N_1 = Group([(1,2,5,4,7,12,10,15,20)(3,14,25,9,22,11,17,6,19)(8,26,24,16,13,27,23,21,18), (1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27), (1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong C9 : C3
N_2 = Group([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27), (1,2,5,4,7,12,10,15,20)(3,14,25,9,22,11,17,6,19)(8,26,24,16,13,27,23,21,18)]) \cong C9 : C3
N_3 = Group([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27), (1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong C9 : C3
N_4 = Group([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27), (1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong C9 : C3
N_5 = Group([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27), (
```

 $N_6 = Group([(1,14,18,4,22,24,10,6,27)(2,19,16,7,25,23,15,11,8)(3,26,20,9,13,5,17,21,12),(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27),(1,2,5,4,7,12,10,15,20)(3,14,25,9,22,11,17,6,19)(8,26,24,16,13,27,23,21,18)]) \cong C9:C3$   $N_7 = Group([(1,25,21,10,19,13,4,11,26)(2,3,24,15,17,18,7,9,27)(5,6,23,20,22,16,12,14,8),(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27),(1,2,5,4,7,12,10,15,20)(3,14,25,9,22,11,17,6,19)(8,26,24,16,13,27,23,21,18)]) \cong C9:C3$   $N_8 = Group([(1,25,4,7,12,10,15,20)(3,14,25,9,22,11,17,6,19)(8,26,24,16,13,27,23,21,18)]) \cong C9:C3$