	$1 a$	$9 a$	$3 a$	$3 b$	$9 b$	$9 c$	$3 c$	$3 d$	$9 d$	$9 e$	$9 f$
χ_{1}	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	$E(3)^{2}$	1	1	$E(3)^{2}$	$E(3)$	1	$E(3)^{2}$	$E(3)$	$E(3)$
χ_{3}	1	1	$E(3)$	1	1	$E(3)$	$E(3)^{2}$	1	$E(3)$	$E(3)^{2}$	$E(3)^{2}$
χ_{4}	1	$E(3)^{2}$	1	1	$E(3)$	$E(3)^{2}$	1	1	$E(3)$	$E(3)^{2}$	$E(3)$
χ_{5}	1	$E(3)$	1	1	$E(3)^{2}$	$E(3)$	1	1	$E(3)^{2}$	$E(3)$	$E(3)^{2}$
χ_{6}	1	$E(3)^{2}$	$E(3)^{2}$	1	$E(3)$	$E(3)$	$E(3)$	1	1	1	$E(3)^{2}$
χ_{7}	1	$E(3)$	$E(3)$	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	1	1	$E(3)$
χ_{8}	1	$E(3)^{2}$	$E(3)$	1	$E(3)$	1	$E(3)^{2}$	1	$E(3)^{2}$	$E(3)$	1
χ_{9}	1	$E(3)$	$E(3)^{2}$	1	$E(3)^{2}$	1	$E(3)$	1	$E(3)$	$E(3)^{2}$	1
χ_{10}	3	0	0	$3 * E(3)^{2}$	0	0	0	$3 * E(3)$	0	0	0
χ_{11}	3	0	0	$3 * E(3)$	0	0	0	$3 * E(3)^{2}$	0	0	0

Trivial source character table of $G \cong \mathrm{C} 9: \mathrm{C} 3$ at $p=3$:

Normalisers N_{i}	N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}

Normalisers N_{i}	N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}
p-subgroups of G up to conjugacy in G	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}
Representatives $n_{j} \in N_{i}$	$1 a$							

Representatives $n_{j} \in N_{i}$	$1 a$							
$1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}+1 \cdot \chi_{4}+1 \cdot \chi_{5}+1 \cdot \chi_{6}+1 \cdot \chi_{7}+1 \cdot \chi_{8}+1 \cdot \chi_{9}+3 \cdot \chi_{10}+3 \cdot \chi_{11}$	27	0	0	0	0	0	0	0

$\frac{1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}+1 \cdot \chi_{4}+1 \cdot \chi_{5}+1 \cdot \chi_{6}+1 \cdot \chi_{7}+1 \cdot \chi_{8}+1 \cdot \chi_{9}+3 \cdot \chi_{10}+3 \cdot \chi_{11}}{} \frac{27}{} \quad 0 \quad 0{ }_{2}$
 $1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+1 \cdot \chi_{4}+1 \cdot \chi_{5}+0 \cdot \chi_{6}+0 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$ $1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}+0 \cdot \chi_{4}+0 \cdot \chi_{5}+0 \cdot \chi_{6}+0 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$
 $1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+0 \cdot \chi_{4}+0 \cdot \chi_{5}+1 \cdot \chi_{6}+1 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$ $1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+0 \cdot \chi_{4}+0 \cdot \chi_{5}+0 \cdot \chi_{6}+0 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$

$P_{1}=\operatorname{Group}([()]) \cong 1$

$P_{1}=\operatorname{Group}([())) \cong 1$
$P_{2}=\operatorname{Group}([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathrm{C} 3$ $P_{3}=\operatorname{Group}([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27)]) \cong \mathrm{C} 3$
$P_{4}=\operatorname{Group}([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27),(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27)]) \cong \mathrm{C} 3 \times \mathrm{C} 3$
$P_{5}=\operatorname{Group}([(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27),(1,2,5,4,7,12,10,15,20)(3,14,25,9,22,11,17,6,19)(8,26,24,16,13,27,23,21,18)]) \cong \mathrm{C} 9$
$P_{6}=\operatorname{Group}((1,4,10)(2,715)(3,17)(5,12,20)(6,1422)(8,16,23)(11,1925)(13,21,26)(18,24,27)(1,25,21,10,19,13,4,11,26)(2,3,24,15,17,18,7,27)(5,6,23,20,22,16,12,14,8)] \cong \mathrm{C} 9$

