	$1 a$	$3 a$	$3 b$	$3 c$	$3 d$	$3 e$	$3 f$	$3 g$	$3 h$	$3 i$	$3 j$
χ_{1}	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	$E(3)$	$E(3)^{2}$	1	$E(3)$	$E(3)^{2}$	1	$E(3)$	$E(3)^{2}$
χ_{3}	1	1	1	$E(3)^{2}$	$E(3)$	1	$E(3)^{2}$	$E(3)$	1	$E(3)^{2}$	$E(3)$
χ_{4}	1	1	1	1	1	$E(3)$	$E(3)$	$E(3)$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$
χ_{5}	1	1	1	$E(3)$	$E(3)^{2}$	$E(3)$	$E(3)^{2}$	1	$E(3)^{2}$	1	$E(3)$
χ_{6}	1	1	1	$E(3)^{2}$	$E(3)$	$E(3)$	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)$	1
χ_{7}	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)$	$E(3)$	$E(3)$
χ_{8}	1	1	1	$E(3)$	$E(3)^{2}$	$E(3)^{2}$	1	$E(3)$	$E(3)$	$E(3)^{2}$	1
χ_{9}	1	1	1	$E(3)^{2}$	$E(3)$	$E(3)^{2}$	$E(3)$	1	$E(3)$	1	$E(3)^{2}$
χ_{10}	3	$3 * E(3)$	$3 * E(3)^{2}$	0	0	0	0	0	0	0	0
χ_{11}	3	$3 * E(3)^{2}$	$3 * E(3)$	0	0	0	0	0	0	0	0

Trivial source character table of $G \cong(\mathrm{C} 3 \times \mathrm{C} 3): \mathrm{C} 3$ at $p=3$:

Normalisers N_{i}	N_{1}	N_{2}	N_{3}	N	N			N_{7}	N_{8}	N_{9}	N_{10}	N_{11}
p-subgroups of G up to conjugacy in G	P_{1}	P_{2}	P_{3}	P_{4}	P			P_{7}	P_{8}	P_{9}	P_{10}	P_{11}
Representatives $n_{j} \in N_{i}$	10	$1 a$	1a	10				$1 a$				
$1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}+1 \cdot \chi_{4}+1 \cdot \chi_{5}+1 \cdot \chi_{6}+1 \cdot \chi_{7}+1 \cdot \chi_{8}+1 \cdot \chi_{9}+3 \cdot \chi_{10}+3 \cdot \chi_{11}$	27	0	0	0				0	0	0	0	0
$1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}+1 \cdot \chi_{4}+1 \cdot \chi_{5}+1 \cdot \chi_{6}+1 \cdot \chi_{7}+1 \cdot \chi_{8}+1 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$	9	9	0	0				0	0	0	0	0
$1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}+0 \cdot \chi_{4}+0 \cdot \chi_{5}+0 \cdot \chi_{6}+0 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+1 \cdot \chi_{10}+1 \cdot \chi_{11}$	9	0	3	0				0	0	0	0	0
$1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+1 \cdot \chi_{4}+0 \cdot \chi_{5}+0 \cdot \chi_{6}+1 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+1 \cdot \chi_{10}+1 \cdot \chi_{11}$	9	0	0	3					0	0	0	0
$1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+0 \cdot \chi_{4}+0 \cdot \chi_{5}+1 \cdot \chi_{6}+0 \cdot \chi_{7}+1 \cdot \chi_{8}+0 \cdot \chi_{9}+1 \cdot \chi_{10}+1 \cdot \chi_{11}$	9	0	0	0				0	0	0	0	0
$1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+0 \cdot \chi_{4}+1 \cdot \chi_{5}+0 \cdot \chi_{6}+0 \cdot \chi_{7}+0 \cdot \chi_{8}+1 \cdot \chi_{9}+1 \cdot \chi_{10}+1 \cdot \chi_{11}$	9	0	0	0				0	0	0	0	0
$1 \cdot \chi_{1}+1 \cdot \chi_{2}+1 \cdot \chi_{3}+0 \cdot \chi_{4}+0 \cdot \chi_{5}+0 \cdot \chi_{6}+0 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$	3	3	3	0				3	0	0	0	0
$1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+1 \cdot \chi_{4}+0 \cdot \chi_{5}+0 \cdot \chi_{6}+1 \cdot \chi_{7}+0 \cdot \chi_{8}+0 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$	3	3	0	3				0	3	0	0	0
$1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+0 \cdot \chi_{4}+0 \cdot \chi_{5}+1 \cdot \chi_{6}+0 \cdot \chi_{7}+1 \cdot \chi_{8}+0 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$	3	3	0	0				0	0	3	0	0
$1 \cdot \chi_{1}+0 \cdot \chi_{2}+0 \cdot \chi_{3}+0 \cdot \chi_{4}+1 \cdot \chi_{5}+0 \cdot \chi_{6}+0 \cdot \chi_{7}+0 \cdot \chi_{8}+1 \cdot \chi_{9}+0 \cdot \chi_{10}+0 \cdot \chi_{11}$	3	3	0	0				0		0	3	0

$P_{1}=\operatorname{Group}([()]) \cong 1$
$P_{2}=\operatorname{Group}([(1,10,4)(2,15,7)(3,17,9)(5,20,12)(6,22,14)(8,23,16)(11,25,19)(13,26,21)(18,27,24)]) \cong \mathrm{C} 3$ $P_{3}=\operatorname{Group}([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27)]) \cong \mathrm{C}$ $P_{4}=\operatorname{Group}([(1,2,5)(3,14,25)(4,7,12)(6,19,17)(8,26,24)(9,22,11)(10,15,20)(13,27,16)(18,23,21)]) \cong \mathrm{C} 3$ $P_{5}=\operatorname{Group}([(1,14,18)(2,19,8)(3,26,20)(4,22,24)(5,9,13)(6,27,10)(7,25,16)(11,23,15)(12,17,21)]) \cong \mathrm{C} 3$ $P_{6}=\operatorname{Group}((1)$
$\left.P_{6}=\operatorname{Group}([1,25,13)(2,17,18)(3,24,7)(4,11,21)(5,22,8)(6,16,12)(9,27,15)(10,19,26)(14,23,20)]\right) \cong \mathrm{C} 3$
$P_{7}=\operatorname{Cr}$

 $N_{3}=\operatorname{Group}([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27),(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathrm{C} 3 \times \mathrm{C} 3$ $N_{4}=\operatorname{Group}([(1,2,5)(3,14,25)(4,7,12)(6,19,17)(8,26,24)(9,22,11)(10,15,20)(13,27,16)(18,23,21),(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathrm{C} 3 \times \mathrm{C} 3$ $N_{5}=\operatorname{Group}([(1,14,18)(2,19,8)(3,26,20)(4,22,24)(5,9,13)(6,27,10)(7,25,16)(11,23,15)(12,17,21),(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathrm{C} 3 \times \mathrm{C} 3$
$N_{6}=\operatorname{Group}((1,25,13)(2,1718)(324,7)(1,1)$ $N_{6}=\operatorname{Group}([(1,25,13)(2,17,18)(3,24,7)(4,11,21)(5,22,8)(6,16,12)(9,27,15)(10,19,26)(14,23,20),(1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)) \simeq \mathrm{C} 3 \times \mathrm{C} 3$

