The group G is isomorphic to the group labelled by [27, 3] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3) : C3$:

	1a	3a	3b	3c	3d	3e	3f	3g	3h	3i	3j
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
χ_3	1	1	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_4	1	1	1	1	1	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$
χ_5	1	1	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)
χ_6	1	1	1	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1
χ_7	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)
χ_8	1	1	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1
χ_9	1	1	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	1	E(3)	1	$E(3)^2$
χ_{10}	3	3 * E(3)	$3 * E(3)^2$	0	0	0	0	0	0	0	0
χ_{11}	3	$3*E(3)^2$	3 * E(3)	0	0	0	0	0	0	0	0

Trivial source character table of $G \cong (C3 \times C3)$: C3 at p = 3:

 $P_1 = Group([()]) \cong 1$

Trivial source character table of $G = (GS \times GS)$. GS at $p = S$.											
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}
p-subgroups of G up to conjugacy in G			P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}
Representatives $n_j \in N_i$			1a	1 <i>a</i>	1a	1a	1a	1a	1a	1 <i>a</i>	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 3 \cdot \chi_{10} + 3 \cdot \chi_{11}$	27	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	9	9	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	9	0	3	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	9	0	0	3	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	9	0	0	0	3	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	9	0	0	0	0	3	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	3	3	3	0	0	0	3	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	3	3	0	3	0	0	0	3	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	3	3	0	0	3	0	0	0	3	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	3	3	0	0	0	3	0	0	0	3	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	1	1	1	1	1	1	1	1	1	1	1

 $P_2 = Group([(1,10,4)(2,15,7)(3,17,9)(5,20,12)(6,22,14)(8,23,16)(11,25,19)(13,26,21)(18,27,24)]) \cong C3$ $P_3 = Group([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27)]) \cong C3$ $P_4 = Group([(1,2,5)(3,14,25)(4,7,12)(6,19,17)(8,26,24)(9,22,11)(10,15,20)(13,27,16)(18,23,21)]) \cong C3$

```
P_5 = Group([(1,14,18)(2,19,8)(3,26,20)(4,22,24)(5,9,13)(6,27,10)(7,25,16)(11,23,15)(12,17,21)]) \cong C3
P_6 = Group([(1,25,13)(2,17,18)(3,24,7)(4,11,21)(5,22,8)(6,16,12)(9,27,15)(10,19,26)(14,23,20)]) \cong C3
P_7 = Group([(1,10,4)(2,15,7)(3,17,9)(5,20,12)(6,22,14)(8,23,16)(11,25,19)(13,26,21)(18,27,24),(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27)]) \cong \mathbf{C3} \times \mathbf{C3} \times
P_{10} = Group([(1,10,4)(2,15,7)(3,17,9)(5,20,12)(6,22,14)(8,23,16)(11,25,19)(13,26,21)(18,27,24),(1,25,13)(2,17,18)(3,24,7)(4,11,21)(5,22,8)(6,16,12)(9,27,15)(10,19,26)(14,23,20)]) \cong \mathbf{C3} \times \mathbf{C3
N_3 = Group([(1,3,8)(2,6,13)(4,9,16)(5,11,18)(7,14,21)(10,17,23)(12,19,24)(15,22,26)(20,25,27), (1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathbf{C3} \times \mathbf{C3}
N_4 = Group([(1,2,5)(3,14,25)(4,7,12)(6,19,17)(8,26,24)(9,22,11)(10,15,20)(13,27,16)(18,23,21), (1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathbf{C3} \times \mathbf{C3}
N_5 = Group([(1,14,18)(2,19,8)(3,26,20)(4,22,24)(5,9,13)(6,27,10)(7,25,16)(11,23,15)(12,17,21), (1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathbf{C3} \times \mathbf{C3}
N_6 = Group([(1,25,13)(2,17,18)(3,24,7)(4,11,21)(5,22,8)(6,16,12)(9,27,15)(10,19,26)(14,23,20), (1,4,10)(2,7,15)(3,9,17)(5,12,20)(6,14,22)(8,16,23)(11,19,25)(13,21,26)(18,24,27)]) \cong \mathbf{C3} \times \mathbf{C3}
```