The group G is isomorphic to the group labelled by [18, 4] in the Small Groups library. Ordinary character table of $G\cong (\mathrm{C3}\times\mathrm{C3}):\mathrm{C2}:$

	1a	3a	3b	3c	3d	2a
(1	1		1			1
(2	1	1	1	1	1	-1
(3	2	2	-1	-1	-1	0
(4	2	-1			-1	0
(5	2	-1	-1	2	-1	0
(6	2	-1	-1	-1	2	0
	(3 (4 (5	$ \begin{array}{c cccc} & 1 & 1 \\ & 2 & 1 \\ & 3 & 2 \\ & 4 & 2 \\ & 5 & 2 \\ \end{array} $	$ \begin{array}{c cccc} (1 & 1 & 1 \\ (2 & 1 & 1 \\ (3 & 2 & 2 \\ (4 & 2 & -1 \\ (5 & 2 & -1 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Trivial source character table of $G \cong (C3 \times C3)$: C2 at p = 2:

()						
Normalisers N_i			N_1			N_2
p-subgroups of G up to conjugacy in G			P_1			P_2
Representatives $n_j \in N_i$	1a	3a	3b	3c	3d	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	2	2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	-1	-1	-1	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	-1	2	-1	-1	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	2	-1	-1	2	-1	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	2	-1	-1	-1	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong C2$

 $N_1 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,4,9)(2,6,12)(3,8,14)(5,11,16)(7,13,17)(10,15,18)]) \cong (C3 \times C3) : C2 \\ N_2 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C2 \\ N_3 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_2 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,7)(6,9)(8,18)(11,17)(13,16)(14,15)]) \cong (C3 \times C3) : C3 \\ N_4 = Group([(1,2)(3,10)(4,12)(5,13)(14,15)(14,$