The group G is isomorphic to the group labelled by [18, 1] in the Small Groups library. Ordinary character table of $G \cong D18$:

	1a	9a	2a	9b	9c	3a
χ_1	1	1	1	1	1	1
$ \chi_2 $	1	1	-1	1	1	1
χ_3	2	-1	0	-1	-1	2
$ \chi_4 $	2	$E(9)^2 + E(9)^7$	0	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1
χ_5	2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	-1
χ_6	2	$E(9)^4 + E(9)^5$	0	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	-1

Trivial source character table of $G \cong D18$ at p = 2:

Normalisers N_i				N_1		N_2
p-subgroups of G up to conjugacy in G				P_1		P_2
Representatives $n_j \in N_i$	1a	9a	3a	9b	9c	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$		2	2	2	2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$		-1	2	-1	-1	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	$E(9)^2 + E(9)^7$	-1	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$		$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	2	$E(9)^4 + E(9)^5$	-1	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,2)(3,18)(4,12)(5,17)(6,9)(7,16)(8,15)(10,14)(11,13)]) \cong C2$

 $N_1 = Group([(1,2)(3,18)(4,12)(5,17)(6,9)(7,16)(8,15)(10,14)(11,13),(1,3,7,4,8,13,9,14,17)(2,5,10,6,11,15,12,16,18),(1,4,9)(2,6,12)(3,8,14)(5,11,16)(7,13,17)(10,15,18)]) \cong D18$ $N_2 = Group([(1,2)(3,18)(4,12)(5,17)(6,9)(7,16)(8,15)(10,14)(11,13)]) \cong C2$