The group G is isomorphic to the group labelled by [12, 4] in the Small Groups library. Ordinary character table of $G \cong D12$:

	1a	2a	3a	6a	2b	2c
χ_1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1
χ_3	1	-1	1	-1	1	-1
χ_4	1	-1	_	-1	-1	1
χ_5	2	2	-1	-1	0	0
χ_6	2	-2	-1	1	0	0

Trivial source character table of $G \cong D12$ at p = 3:

_									
Normalisers N_i		N_1				N_2			
p-subgroups of G up to conjugacy in G		P_1			P_2				
Representatives $n_j \in N_i$	1a	2b	2a	2c	1a	2b	2a	2c	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	3	1	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	3	-1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	3	1	-3	-1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	3	-1	-3	1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	-1	-1	1	-1	1	-1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	1	-1	1	1	-1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	-1	1	1	-1	-1	1	

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(1, 8, 4)(2, 10, 6)(3, 11, 7)(5, 12, 9)]) \cong C3$